Tag Archive mobile

China Design Conference (April 2016) Adds RF-SOI Design Track

EdiCon16EDI CON China 2016, taking place April 19-21 in Beijing at the China National Convention Center (CNCC) will feature a keynote talk by GlobalFoundries‘ Peter Rabbeni, Sr. Director, RF BU Business Development & Product Marketing. The talk, entitled, “RF SOI: Revolutionizing Radio Design Today and Driving Innovation for Tomorrow”, will kick off the newly added RF-SOI Technology Track. The SOI Track will also feature talks and workshops from Peregrine Semiconductor, TowerJazz, Simgui, AnalogSmith and Shanghai Jiao Tong University. The talks will cover substrate engineering, design enablement, CMOS power amplifier design techniques and highly integrated control devices.

Mr. Rabbeni’s keynote talk will cover how there has been dramatic growth in RF SOI over the last several years in its continued march in driving performance improvement, cost reduction and architecture innovation between the transceiver and the antenna in mobile radios. No other radio technology in recent memory has had the impact that RF SOI has had in this respect. With standards becoming increasingly more challenging and the pending introduction of 5G, RF SOI is expected to continue to play an important role in the development of innovative architectures. His presentation will explore where we have been, why and where we may be headed with this technology. Substrate engineering and SOI device technology is reviewed in detail in Microwave Journal’s October 2015 cover story at http://www.microwavejournal.com/articles/25255.

More information is available at www.ediconchina.com.

RF-SOI Innovator JP Raskin (his team’s work is in your smartphone) Awarded Blondel Medal

Raskin_BlondelMedal2015_RFSOI

Professor Jean-Pierre Raskin (right) receiving the Blondel Medal for his industry-changing work on RF-SOI. Jury president Professor Pere Rocal I Cabarrocas (left) of the Ecole Polytechnique – Université Paris-Saclay presented the prize.

RF-SOI substrate guru Jean-Pierre Raskin, whose team at UCL* has driven the technology behind the most advanced wafer substrates for RF applications, has been awarded one of the highest honors in electronics: the prestigious Blondel Medal. The technology he pioneered is now in virtually all the world’s smartphones, and used by just about every RF foundry on the planet.

Dr. Raskin’s team first demonstrated a radical new approach (dubbed “trap rich” at the time) for improving the RF performance of high-resistivity (HR) SOI substrates back in 2003. Teams from UCL and Soitec then worked together on the industrialization, making it commercially available in SOI substrates for RF applications.

ASN readers will recognize this work from a 2013 article Dr. Raskin co-authored, Soitec and UCL Boost the RF Performance of SOI Substrates.

The result was a new wafer substrate Soitec named eSI, for enhanced Signal Integrity, and it’s been wildly successful. In fact Soitec estimates that more than one billion RF devices are produced each quarter using their eSI wafers. It’s been used for 2G, 3G and now 4G and LTE. With the advent of LTE-Advanced (aka LTE-A), 5G and Wi-Fi 802.11.ac (aka Gigabit Wi-Fi), the latest iterations of the Raskin team’s technology are in Soitec’s most advanced eSI90 wafers.

The Blondel Medal is the highest honor awarded by the SEE (the French Society for Electricity, Electronics, IT and Communications Technologies). It recognizes a researcher under 45 years old who has authored works or recorded exceptional achievements that have contributed to the advancement of science in Information and Communication Technology.

~ ~

*UCL is the Université catholique de Louvain in Belgium. Click here to read more about Dr. Raskin’s research group.

The Ever-Expanding 28nm FD-SOI Ecosystem (Samsung Interview, Part 3 of 3)

(New)Kelvin Low Portrait 2015

Kelvin Low, senior director of marketing for Samsung Foundry

Axel_Fischer_Samsung_28FDSOI_sm

Axel Fischer, director of Samsung System LSI business in Europe

For this 3-part series, ASN spoke with Kelvin Low, senior director of marketing for Samsung Foundry and Axel Fischer, director of Samsung System LSI business in Europe about the company’s FD-SOI offering. Here in part 3, we’ll talk about the ecosystem. (In part 1 we talked about technology readiness, and in part 2, we talked about design.)

~ ~ ~

ASN: Let’s talk a little more about IP availability.

Axel Fischer: The availability of IP is key for engaging these market segments. The technology itself is ready. The gating item often is the IP element.

Kelvin Low: The IP element is broadly ready. But we’re not stopping there. We’re enhancing the IP and adding on new suppliers. Most of them we can’t name yet just because of timing. But we can confidently say that multiple new IP suppliers are coming online, and many more have started to inquire about how they can get onboard.Samsung_28FDSOI_IP_reuse_14

ASN: In terms of the ecosystem, what remains to be done?

KL: The ecosystem can never end. Enhancements will always be welcome. More support – there are so many other EDA software companies out there available. We will enable them if there is a customer behind them. IP are dictated by the standards. As long as the product requires that, we’ll continue to look for partners to develop the IP.

AF: Especially as you have good support for RF/analog functionality. So, this ecosystem becomes quite important.Samsung_28FDSOI_enablement_11

KL: Back to one of the strategic decisions we made. We have immediately made available what ST Micro has in terms of IP portfolio to our customers. Then continuously build this ecosystem according to the new customers that we’re acquiring. ST Micro has developed these IPs for their own internal products, and they were gracious enough to allow these IPs to be opened up to be used by all customers without restriction.

As a group, as an ecosystem, we have to be more proactive in educating the market. What we’ve seen so far, whether it’s an initiative by Leti or an initiative by the SOI Consortium, these are very helpful. Now you have so many more knobs that you can play with, for designers we have to prepare all these PVT – which is process, voltage, temperature, and timing points so they can actually use it. It’s just a matter of preparation needed from our end, working with the ecosystem. The EDA tools must be optimized to make it as seamless, as transparent as possible.

ASN: Any closing thoughts?

KL: 28FDSOI is real. Samsung is committed. The technology is qualified already. The ecosystem is ready and expanding. This is working stuff. It’s not a powerpoint technology.

Samsung_28FDSOI_future_15~ ~ ~

This is the last installment in ASN’s 3-part interview with Samsung on their 28nm FD-SOI foundry offering. If you missed the other parts, you can still read part 1 about technology readiness (click here), and part 2 on design considerations (click here).

Mentor tools being qualified for GlobalFoundries’ 22nm FD-SOI process

Mentor Graphics is collaborating with GlobalFoundries on 22nm FD-SOI to qualify the Mentor® RTL to GDS platform for the current version of GlobalFoundries 22FDX™ platform reference flow. (Read the press release here.) This includes including Mentor’s RealTime Designer™ physical RTL synthesis solution and Olympus-SoC™ place & route system. In addition, Mentor and GF are working on the development of the Process Design Kit (PDK) for the 22FDX platform. The PDK includes support for the Mentor Calibre® platform, covering design rule checking (DRC), layout vs. schematic (LVS) and metal fill solutions for 22FDX. These solutions help mutual customers optimize their designs using the capability of 22FDX technology to manage the power, performance and leakage.

“We are collaborating closely with Mentor Graphics on enabling their products to help customers realize the benefits of the 22FDX platform,” said Pankaj Mayor, vice president of Business Development for GlobalFoundries. “The qualification of Mentor tools for implementation flows and design verification will help designers to achieve an optimal balance between power, performance and cost.”

The next release of the 22FDX PDK will put GF’s differentiated DFM capabilities into the hands of designers, says a Mentor spokesperson, ensuring delivery of high-quality designs and ensuring faster ramps to production.

When to Choose 28nm FD-SOI and Why (Samsung Interview Part 2 of 3)

(New)Kelvin Low Portrait 2015

Kelvin Low, senior director of marketing for Samsung Foundry

Axel_Fischer_Samsung_28FDSOI_sm

Axel Fischer, director of Samsung System LSI business in Europe

For this 3-part series, ASN spoke with Kelvin Low, senior director of marketing for Samsung Foundry and Axel Fischer, director of Samsung System LSI business in Europe about the company’s FD-SOI offering. Here in part 2, we’ll talk about design. (In part 1, we talked about Samsung’s technology readiness. In part 3, we’ll talk about the ecosystem.)

~ ~ ~

ASN: Let’s start by talking about value. What do you see as the key advantages of 28nm FD-SOI?

Kelvin Low: FD-SOI is wide-ranging. What I mean by this is for the designers, there are many design knobs available that you can use to achieve either high performance or ultra low power. That’s a an extremely valuable and important proposition. The wide dynamic performance-power range is achieved with FD-SOI’s body biasing ability. Though bulk technologies allow body biasing, it has a comparatively much narrower range.

Samsung_28FDSOI_lowpower_knobs_13Another key benefit is the super analog gain and properties of FD-SOI. I think moving forward, we’ll probably start to see more customers that are analog-centric. Later on, we’ll see this as one of the key value propositions of FD-SOI. Today, there’s still a lot of digital customers that we’re engaged with right now. The analog customers are still not yet aggressively migrating to [[more advanced]] technology nodes, but when they come, this will be an important distinction in FD-SOI vs. bulk.

Another important distinction not related to power-performance-area is the robustness of the reliability. This is a well-proven fact that FD-SOI is much more robust for soft-error immunity as compare to bulk. So anything that needs radiation protection (for example, military, aerospace – but those are not really the high-volumes), as well as automotive products, you’ll see value of better SER immunity as compared to bulk. Not just memory SER but logic SER. There are available design techniques to overcome / account for that. For example, if you design to overcome SER, you incur overhead in area for example. With FD-SOI, this is intrinsic, so you don’t need design tricks to suppress it.

ASN: When should designers consider using 28nm FD-SOI as opposed moving to 14nm FinFET or choosing another 28nm technology?

KL: By virtue of one being 28 and the other being 14, if you do need a lot of logic feature integration, or die-size reduction, 14nm will obviously become more necessary. If you just are looking for power savings, both 14nm FinFET and 28nm FD-SOI are fully depleted in nature, so both are able to operate with a lower power supply. So those are similarities. 14nm FinFET does provide higher performance compared to 28nm by virtue of how the process is constructed. Lastly, cost, which is related to the number of double-patterning layers – at 28nm, avoiding all the expensive double-patterning layers and 14nm having double-patterning being necessary for all the area scaling – that presents itself as a real difference. The end-product cost can also determine the choice of the technology selection.

Samsung_28FDSOI_Vdd_9Axel Fischer: The end-product cost, plus as well the investments from the customer side: the customer has to make a certain investment to develop the chip in terms of overall cost. If you look at photomask payment, NRE* and so on – this is weighting strongly, more and more as you go forward with advanced node technologies. There’s a set of customers that are feeling very comfortable to stay on the 28nm node.

KL: There are several 28nm flavors. There’s Poly-SiON, there’s HKMG, and there’s HKMG-FD-SOI. In terms of performance, there’s really a very clear distinction. In terms of power, you see a more radical power reduction with FD-SOI. In chip area scaling, I’d say roughly the same between HKMG and FD-SOI. This is dictated not so much by the transistor but by the overall design rules of the technology. So, 14nm is the higher cost point. 28nm is a much lower cost point, so overall a given budget that a customer has can determine whether 14nm is usable or otherwise. We have to sit down with the customer and really understand their needs. It’s not just trying to push one over the other solution. Based on their needs, we’ll make the proper recommendations.Samsung_28FDSOI_PPA_7

ASN: Can designers get started today?

KL: We are moving FD-SOI discussions with customers to the next phase, which is to emphasize the design ecosystem readiness. So what we’ve been working on, and we really appreciate ST Micro’s support here, is to kick-start market adoption. We have access to ST Micro’s foundation library, and some of their foundation and basic IPs. Here, Samsung is distributing and supporting customers directly. They need to only work with us, and not with ST Micro. So they have access to the IP through us. We also provide design support, and we have additional IPs coming in to serve the customers from the traditional IP providers.

Many designers are new to body biasing. Fortunately, there are a couple of design partners that can help in this area. Synapse being one of them; Verisilicon another. Already, they have put in resources and plans and additional solutions to catalyze this market. In short, the PDK is available today, and the PDK supporting multi tools – Synopsys, Cadence and Mentor – are all available for download today. Libraries are also all available for download.

There’s nothing impeding designers from starting projects now. This is why we believe that 28FDSOI is the right node, because we are enabling the market to start projects today. If we start something else down the road, like a 14nm FD-SOI, for example, or something in between, the market will just say, hey, we like your transistor, we like your slides, but I have nothing to start my project on. So that is bad, because then it becomes a vicious cycle. We believe we have to enable 28nm designs now. Enable customers to bring actual products to the market. Eventually from there you can evolve 28 to something else.

ASN: Let’s talk some more about design considerations and body biasing, how it’s used and when.

KL: Both 14nm FinFET and 28nm FD-SOI are fully depleted. One unique technology value of fully-depleted architecture is the ability to operate the device at lower power supply. So power is the product of CV²/frequency. If you can operate this chip at lower power supply, you get significant dynamic power savings. FinFET does not have a body effect, so you cannot implement body biasing – it’s just not possible.

Samsung_28FDSOI_bodybias_8FD-SOI, on the other hand, has this extra knob – body biasing – that you can use. With reverse body bias (RBB), you can get much lower leakage power. If you want more performance, you can activate the FBB to get the necessary speed. Again, this is not possible with FinFET. So that will be one distinction. It depends on how you’re using your chip. It all depends on the system side, or even at the architecture side, how is it being considered already. If you’re already very comfortable using body biasing, then going to FinFET is a problem, because you’ve lost a knob. Some would rather not lose this knob because they see it as a huge advantage. That doesn’t mean you can’t design around it, it’s just different.

There are already users of body biasing for bulk. For customers that already use body biasing, this is nothing new. They’re pleased to now have the wider range, as opposed to the more narrow range for bulk.

AF: And probably going to FinFET is more disruptive for them. With FinFET, you have double-patterning considerations, etc. More capacitance to deal with.

ASN: Porting – does FD-SOI change the amount of time you have to budget for your port?

KL: If a customer already has products at 28nm, and they’re now planning the next product that has higher speed or better power consumption – they’re considering FinFET as one option, and now maybe the other option available is 28nm FD-SOI. The design learnings of going to FinFET are much more. So the port time will be longer than going to 28nm FD-SOI. We see customers hugely attracted because of this fact. Now they’re trying to make a choice. If it’s just a time-to-market constraint, sometimes FinFET doesn’t allow you to achieve that. If you have to tape out production in six months, you may have to use FD-SOI.

Samsung_28FDSOI_apps_6AF: Another key point for customers deciding to work with 28FDSOI is the fact that Samsung Foundry has joined the club. A few customers really hesitated on making the move to 28nm FD-SOI ST Micro is a very really advanced company, doing its own research and development, but the fact that the production capability was very limited has people shying away. Besides the technology, the presence and the engagement of Samsung is giving another boost to the acceptance.

KL: Yes, we’re recognized as a credible, high-volume manufacturing partner. That helps a lot.

~ ~ ~

*NRE = non-recurring engineering. In a fabless scenario, there are NRE for IP and design (engineering costs, up-front and royalty-based IP costs), NRE for masks and fabrication (mask costs, wafer prototype lots, tools costs, probe cards, loadboards and other one-time capital expenditures), and NRE for qualifications (ESD, latch-up and other industry-specific qualifications, as in automotives).

~  ~ ~

This is the second installment in ASN’s 3-part interview with Samsung on their 28nm FD-SOI foundry offering. If you missed the other parts, you can still read part 1 about technology readiness (click here), and part 3 on the ecosystem (click here).

Yes, 28nm FD-SOI Silicon Is Running (Samsung Interview, Part 1 of 3)

(New)Kelvin Low Portrait 2015

Kelvin Low, senior director of marketing for Samsung Foundry

Axel_Fischer_Samsung_28FDSOI_sm

Axel Fischer, director of Samsung System LSI business in Europe

ASN spoke with Kelvin Low, senior director of marketing for Samsung Foundry and Axel Fischer, director of Samsung System LSI business in Europe about the company’s FD-SOI offering. Here in part 1, we’ll talk about technology readiness. In parts 2 and 3, we’ll talk about design and the ecosystem.

~ ~ ~

ASN: Where does Samsung stand in terms of rolling out your 28nm FD-SOI offer?

Kelvin Low: We have completed key milestones. Wafer level qualification was completed in September 2014, and then product level qualification in March 2015. So, the good news is the technology is fully qualified now.

What we have additionally in terms of overall technology readiness is production PDKs available right now. We have run a couple of MPWs already, and we’re scheduling more for next year. Silicon is really running in our fab. I think many may not have grasped that fact. Silicon is running, and we are running production for ST as one of our lead customers.

Samsung_28FDSOI_PDKS_12Axel Fischer: We already have a long relationship with ST – since 32 and 28nm HKMG bulk. We had a press release where we stated that more than a dozen projects had been taped out. EETimes published an article at the time. Adding 28 FD-SOI was a natural extension of an existing relationship

KL: That’s right –This is not a new customer scenario – it’s an existing customer, but an expansion of technology. And, in this case, it’s also a collaboration technology and IP solutions.

We are ST Micro’s primary manufacturing partner; this is one reason that it’s mutually beneficial for both of us. Crolles is not aiming for high volume. They prototype well. They do MPW and IP well, but they are not a high-volume fab. So, we complete the production rollout at Samsung Foundry.

ASN: Do you have other customers lined up?

KL: The short answer is yes. Beyond ST, Freescale can we talk about, since they have openly stated that they are using FD-SOI with us. Other customers, unfortunately, we just can’t say.But, they are in all the market segments (especially IoT) where the cost and ultra-low power combination is a very powerful one.

ASN: What about technology readiness and maturity?

KL: We have a couple of different 28 variants: the LPP, the LPH with more than a million wafers shipped. And because of that, our D0 – defect density – is at a very mature level. 28FD-SOI, sharing almost 75% of the process modules of 28 bulk, allows us to go to a very steep D0 reduction curve. We are essentially leveraging what we already know from the 28 bulk production experience. Defect density is essentially the inverse of yield. So, the lower the D0, the higher the yield.

Samsung_28FDSOI_process_costThis slide [[see above]] show the similarities between our FD-SOI and our 28 HKMG bulk. You can see how more than 75% of bulk modules are reused. The BEOL is identical, so its 100% reused. On the FEOL, some areas require some minor tuning and some minor modification, but anything that is specific to FD-SOI is less than 5% that we have to update from the fab perspective. All the equipment can be reused in the fab. There may be a couple of pieces related to the FD-SOI process that need to be introduced.Other than that, the equipment is being reused and can depreciated,.which is essential for any business. We leverage another lifetime for the tools.

ASN: When will we see the first high-volume FD-SOI chips? Next year?

KL: It depends on what market segment. Consumer, yes, I fully agree, they can ramp very fast. But other segments like infrastructure, networking or automotive, they’ll take a longer time to just qualify products.

AF: It’s not just us. If our customer needs to prove that the product is compliant with certain standards, you have to go through test labs and so on, this can be a very lengthy process. Product can actually be ready, and we’re all waiting to produce, but they’re still waiting for reports and the software that’s goes on top – this can be a very long cycle.

KL: We’re already starting to support the production ramp for ST. They’ll be on the market very soon.

[[Editor’s note: ST has announced three set-top box chips on 28nm FD-SOI– you can read about them here.]]

Samsung_28FDSOI_wafersAF: ST is our first partner for high-volume production. We started working together very early, so they have a time-to-market advantage.

KL: Everyone’s waiting for ChipWorks or TechInsights to cut away an end-product device that has FD-SOI. It’s just a matter of time.

~ ~ ~

This is the first installment in ASN’s 3-part interview with Samsung on their 28nm FD-SOI foundry offering. Part 2 will cover design considerations, and Part 3 will look at the ecosystem.

Interview (part 2 of 2): Leti Is a Catalyst for the FD-SOI Ecosystem. CEO Marie Semeria Explains Where They’re Headed

MarieSemeria_LetiCEO_©PIERREJAYET

Leti CEO Marie Semeria (photo ©Pierre Jayet/CEA)

From wafers to apps, Leti has been the moving force behind all things SOI for over 30 years. Now they’re the powerhouse behind the FD-SOI phenomenon. CEO Marie-Noelle Semeria shares her insights here in part 2 of this exclusive ASN interview as to what Leti’s doing to drive the ecosystem forward. (In part 1, she shared her insights into what makes Leti tick – if you missed it, you can click here to read it now.)

~ ~ ~

ASN: In which areas do you see SOI giving designers an edge?

MS: There is an advantage in terms of cost and power, so it’s attractive for IoT, for automotive, and more and more for medical devices. We see the first products in networks, in imaging, in RF. The flexibility of the design, thanks to the back bias gives another asset in terms of integration and cost. We consider that 28nm FD-SOI and 22nm FD-SOI are the IoT platforms, enabling many functions required by IoT applications. It’s a very exciting period for designers, for product managers, for start-ups. You can imagine new applications, new designs, and take advantage of engineered substrates combined with planar FD-SOI CMOS technology and 3D integration strategies to explore new frontiers.

Leti_MobileCR_JAYET_CEA

Leti’s home at the Minatec Innovation Campus in Grenoble boasts 10,000m² of clean room space. Here we see Leti’s mobile clean room, which they call the LBB ( for Liaison Blanc Blanc) carrying wafers from one clean room to another. (photo credit: P.Jayet/CEA)

ASN: What is Leti doing moving forward?

MS: Our commitment is to create value for our partners. So what is key for SOI now is to extend the ecosystem and to catch the IoT wave, especially for automotives, manufacturing and wearables. That’s why we launched the Silicon Impulse Initiative (SII) as a single entry gate providing access to FD-SOI IP and technology. SII is a consortium, gathering Soitec, ST, CMP, Dolphin and others, in order to beef up the EDA and design ecosystems. Silicon Impulse offers multi-project wafer runs (MPWs) with ST and GF as foundries based on a full portfolio of IPs. SII is setting up the ecosystem to make FD-SOI technology available for all the designers who have IP in bulk or in FinFET. To reach designers, we have set up events close to international conferences like DAC and VLSI, and we promote SII together with the SOI Consortium in San Francisco, Taiwan, Shanghai, Dresden….

The second way we are accelerating the deployment of FD-SOI technology in manufacturing is to provide our expertise to the companies who made the choice for FD-SOI technology. Leti assignees are working in Crolles with ST and in Dresden with GF to support the development of the technology and of specific IP such as back bias IP. The design center located in the Minatec premises is also open to designers who want to experiment with FD-SOI technology and have access to proof in silicon.

ASN: What role does Leti play in the SOI roadmap?

MS: The role of Leti is to pioneer the technology, to extend the ecosystem and to demonstrate in products the powerful ability of FD-SOI to impact new applications. Leti pioneered FD-SOI technology about 20 years ago. Soitec is a start-up of Leti, as well as SOISIC (which was acquired by ARM) in design. We developed the technology with ST, partnering with IBM, TI and universities. Now we’ve opened the ecosystem with GlobalFoundries and are considering new players. With the Silicon Impulse Initiative we are going a step further to open the technology to designers in the framework of our design center. We have had a pioneering role. Now we have to play a catalyst role in order to channel new customers toward FD-SOI technology and to enable new products.

Leti demonstrates that the FD-SOI roadmap can be expanded up to 7nm with huge performance taking advantage of the back biasing. Leti’s role is to transform the present window into a wide route for numerous applications requiring multi-node generations of technologies.

CEA002051_JAYET_CEA

Leti is located in the heart of Minatec, an international hub for micro and nanotechnology research. The 50-acre campus is unlike any other R&D facility in Europe. (Photo credit: Pierre Jayet/CEA)

ASN: Is Silicon Impulse strictly FD-SOI, or do you have photonics, MEMS, RF-SOI…?

MS: We started with FD-SOI at 28nm because it’s available: it’s here. But as soon as the full EDA-IP ecosystem is set-up, this will be open for sure to all the emerging technologies: embedded memory (RRAM, PCM,MRAM…), 3D integration (CoolCube, Cu/Cu), imaging, photonics, sensors, RF, neuromorphic technology, quantum systems….which are developed in Leti. Having access to a full capability of demonstrations in a world class innovation ecosystem backed by a semiconductor foundry and a global IP portfolio leverages the value of SII.

ASN: Can you tell us about the arrangement with GlobalFoundries for 22nm FD-SOI? How did that evolve, and what does it mean for the ecosystem?

MS: Yes, last month we announced that we have joined GlobalFoundries’ GlobalSolutions ecosystem as an ASIC provider, specifically to support their 22FDX™ technology platform. We have worked with GlobalFoundries over the years in the frame of the IBM Alliance pre-T0 program..

In joining the GlobalSolutions ecosystem, Leti’s goal is to ensure that GF’s customers – chip designers – get the very best service from FD-SOI design conception through high-volume production. This has been in the works for a while. At the beginning of 2015, we sent a team to GlobalFoundries’ Fab 1 in Dresden to support ramp up of the platform. And now as an ecosystem partner, Leti will help their customers with circuit-design IP, including fully leveraging the back-bias feature, which will give them exceptional performance at very low voltages with low leakage.

We will be able to help a broad range of designers use all the strengths that FD-SOI brings to the table in terms of ultra-low-power and high performance, especially in 22nm IoT and mobile devices. It really is a win-win situation, in that both our customer bases will get increased access to both our respective technologies and expertise. It’s an excellent example of Leti’s global strategy.

~ ~ ~

(This concludes part 2 of 2 in this Leti interview series. In part 1, Marie Semeria shared her insights into what makes Leti tick – if you missed it, you can click here to read it now.)

TowerJazz Cites Strong RF-SOI Growth as Driving force in TX Fab Acquisition

TowerJazz-Maxim-Fab

Citing strong RF-SOI demand, TowerJazz has signed an agreement to purchase Maxim’s 8-inch fab in San Antonio, Texas (shown here).

With the acquisition of Maxim’s 8-inch fab in San Antonio, Texas, TowerJazz plans to quickly qualify its core specialty technologies, including its advanced Radio-Frequency Silicon-on-Insulator (RF-SOI) offering, to serve the substantial growth in demand from its customers. (See press release here.)

The proposed purchase will expand TowerJazz’s current worldwide manufacturing capacity, cost-effectively increasing production by approximately 28,000 wafers per month. The availability of additional capacity is expected to be needed to serve TowerJazz’s current and forecasted robust customer demand. TowerJazz and Maxim expect to close the transaction in January 2016, subject to customary closing conditions.

Leti Develops 22nm FD-SOI Local-strain Techniques to boost performance and lower power consumption

CEA-Leti announced it has developed two techniques to induce local strain in FD-SOI processes for next-generation FD-SOI circuits that will produce more speed or lower power consumption and improved performance. (For more details, read the press release here.) Targeting the 22/20nm node, the local-strain solutions are dual-strained technologies: compressive SiGe for PFETs and tensile Si for NFETs. In addition to clearing the path to improved performance in FD-SOI technology, they preserve its excellent electrostatic integrity and its in situ performance tunability, due to back biasing.

The two techniques Leti developed can induce local stress as high as 1.6 GPa in the MOSFETs channel. Strained channels enable an increase in the on-state current of CMOS transistors. As a result, chips can deliver more speed at the same power, or reduce consumed power for longer battery life at the same performance. The first technique relies on strain transfer from a relaxed SiGe layer on top of SOI film. The second technique is closer to strain memorization methods and relies on the ability of the BOX to creep under high-temperature annealing.

“These two new techniques broaden the capabilities of Leti’s FD-SOI platform for next-generation devices, and further position the technology to be a vital part of the Internet of Things and electronics products of the future,” said Maud Vinet, head of Leti’s Advanced CMOS Laboratory.

Toshiba announces new RF-SOI process and smartphone switch with industry-best insertion loss

Toshiba has announced TaRF8, the next generation in the company’s TarfSOI™ (aka Toshiba advanced RF SOI) process, which is optimized for RF switch apps. The first product to use the technology is Toshiba’s new SP12T, enabling the lowest-class of insertion loss in the industry. Lowering insertion loss is recognized as particularly important in decreasing RF transmission power loss, which in turn means longer battery life for mobile devices. Sample shipments of SP12T RF switch ICs fabricated with the new process will start in January 2016. (See the press release here.)

Designed for use in smartphones, the SP12T RF switch is suitable for 3GPP™ GSM, UMTS, W-CDMA, LTE™ and LTE-Advanced standards.

Toshiba develops high-performance RF switch ICs using its in-house fab’s SOI-CMOS technology, which is suitable for integrating analog and digital circuits. By handling all aspects of production flow, from RF process technology development to the design and manufacturing of RF switch chips, Toshiba says it can quickly improve SOI-CMOS process technology in response to feedback from the development results of its own RF switch IC products. This IDM approach allows Toshiba to rapidly establish new process technologies suited to actual products, and to enter the market with products fabricated with the latest process technology.