Tag Archive rf

China FD-SOI/RF-SOI Presentations Posted; Events Confirm Tremendous Growth

The FD-SOI and RF-SOI events in Shanghai and Nanjing were absolute success stories. Over the course of five days, hundreds of executives and design engineers packed halls for talks by the leaders of the top ecosystem players, and for tutorials given by the world-renowned design experts.

These annual events have been ongoing in China now for a few years now. Citing the tremendous growth of SOI, Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Science in Shanghai said in his keynote, “We’ve come a long way.” Five years ago, he recalled, very few people in China even knew what SOI was. Today the central government has recognized its value, and the ecosystem is riding a wave of growth and strength. A national industrial IC group has been approved for investment, and design/IP are ready. The industry has reached a consensus, he said, that FD-SOI is cost-effective and complementary to Finfet, while RF-SOI has reached an almost 100% adoption rate in front-end switches for mobile phones.

Dr. Xi Wang, DG of SIMIT and head of the Chinese Academy of Sciences in Shanghai giving a keynote address at the 5th Shanghai FD-SOI Forum. (Photo courtesy: Simgui and the SOI Consortium)

Many of the presentations are now publicly available on the Events page of the SOI Consortium website. Here are the links:

(Photo credit: Adele Hars)

Over the next few weeks, I’ll cover the highlights of each of these events. Their success clearly represents a tremendous vote of confidence for the SOI ecosystem in China and worldwide.

The success of these SOI events is a testament to China’s recognition of the great opportunity of SOI-based chip technologies. FD-SOI decreases power consumption and enables deep co-integration of digital, analog, RF, and mm-wave. RF-SOI enables 4G and 5G connectivity with even richer integrated functionalities. It allows the fusion of the RF switch, LNA, and PA, for supporting both traditional sub-6GHz but also mm-wave frequency ranges. SOI technologies also offer a means for China – already the world’s largest chip consumer – to leap to the forefront of chip design and manufacturing,” noted Giorgio Cesana, Executive Co-Director of the SOI Consortium.

The events were followed by top tech news outlets in China. Links follow below (the pieces are in Chinese; or you can open them in Google Translate or Chrome to read them in the language of your choice). Tip: in these pieces you’ll find lots of great pics of key slides, including some that have not been shared on the Consortium website.

FD-SOI coverage included pieces in top pubs such as EETimes China, EEFocus, EDN China (plus a focus piece) and Laoyaoba to name a few. Leading bloggers also posted excellent overviews as well as pieces about specific presentations, including those by Samsung, GlobalFoundries and Handel Jones.

RF-SOI coverage included pieces in leading publications such as China IC, EETimes China, EDN China, EEFocus and SemiInsights.

Body Biasing: It’s Not an Obligation, It’s an Opportunity. And Other Take-Aways from the FD-SOI Design Tutorial Day.

Over a hundred chip designers packed the room for the SOI Consortium’s recent FD-SOI Design Techniques Tutorial Day. Five professors and scientists from top institutions covered design techniques with real examples in digital, mixed-signal, analog, RF, mmW and ULV memory.

Although it was in Silicon Valley, people actually flew in from all over the world to be there. During the Q&A at the end, most everyone prefaced their questions by saying, “Thank you. I really learned a lot today.”

Many of the questions pertained to body biasing, which prompted STMicroelectronics Fellow and Professor Andreia Cathelin to state what may well have been the take-away of the day. “Body biasing is not an obligation,” she said. “It’s an opportunity.”

Q& A with the professors at the end of the FD-SOI Tutorial day. (Courtesy: SOI Consortium)

The tutorial, sponsored by both Samsung and GlobalFoundries, was hosted by Samsung at their San Jose headquarters.  But as this was a paying event, the presentations are only available to those who attended.  Having had the good fortune to attend, I can give you a quick recap of some of the highlights.

Analog, Mixed-Signal and mmW Design: The Overview

Professor Cathelin set the stage with a basic overview of FD-SOI design for analog, mixed-signal and mmW.

FD-SOI is a perfect match for the many up and coming SOCs that are often half analog and/or RF and mmW.  She explained how FD-SOI makes the analog designer’s life much easier (no small feat, since analog can seem rather like blackbox magic to those on the digital side).  FD-SOI improves: performance (even at high frequencies), noise, short device efficiency and brings in a new very efficient transistor knob through the Vt (threshold voltage) tuning range. She also explained and gave numerous real examples implemented in ST’s 28FDSOI on how:

  • forward body bias (FBB) can be used as a Vt tuning knob, giving the designer a very large Vt tuning range, both for analog/RF and mmW designs;
  • the improved analog performance gives you lower power consumption;
  • transistors can operate with decent design margins at L>Lmin.

For mmW design, the transistor should operate at Lmin, and hence you get excellence performance in terms of both transition frequency (Ft – set by the technology node) and maximum frequency (Fmax – what the designer can really get in the gain vs. speed trade-off). This can be conjugated with the fact that the back-end of line, despite the very fine nm node, takes advantage of the SOI features and brings in very decent quality factors.

For mixed-signal/high-speed design, she showed how and why FD-SOI gives you improved variability, a fantastic switch performance, and reduced parasitic capacitance. All these permit state of the art results in high-speed data converters, or, for example, lower frequency implementations which do not need any specific calibration for best in class linearity and ENOB (effective number of bits).

She also presented details on the CEA-Leti electrical models which are now the reference stand point (Leti-UTSOI2) for any FDSOI technology, and are implemented in several industrial Design Kits such those from ST.

RF, mmW and Broadband Fiber-Optic SOCs

Next on tap was a very lively talk with almost 60 slides by Professor Sorin Voinigescu of U. Toronto.  He focused on how to use the main features of FD-SOI for efficient design of RF, mm-wave and broadband fiber-optic SOCs.  We’re talking high-speed/high-frequency here, and he had real examples of chips fabbed in ST’s 28FDSOI and some simulated in GlobalFoundries’ 22FDX technology.

Last slide from Professor Voinigescu FD-SOI tutorial. (Courtesy: U.Toronto, SOI Consortium)

He examined layout issues and gave measurement tips and tricks, noting that there are a lot of things you can do in FD-SOI that you can’t do in bulk.  It’s also easier to get high linearity in FD-SOI – yet another reason that he really likes it.  Plus he sees it as competitive in terms of scaling even past 7nm.

ULV Memories

Professor Joachim Rodrigues of Lund University in Sweden (the largest university in Scandinavia) talked about Design Strategies for ULV memories in 28nm FD-SOI (ST’s FD-SOI technology). Noting that SRAMs eat a lot of area in an SOC, he first proposed a standard cell-based memory (SCM) in 28nm FD-SOI that cut memory area by 35% and reduced leakage by 70%.

Professor Joachim Rodrigues of Lund University presenting at the 2017 FD-SOI Design Techniques Tutorial Day in Silicon Valley (Courtesy: Lund U., SOI Consortium)

He then talked about other chips he and his team have presented at the world’s top chip conferences, including an ultra-low voltage (ULV) SRAM.  For that chip they lay claim to having the best write performance in ULV in sub-65nm (15MHz at 240mV), and the  best performing read capability across all technologies (30MHz at 240mV). In each case, he explained the fundamental design considerations, concepts and trade-offs.

Berkeley: 10 FD-SOI Chips – and Still Counting!

Professor Borivoje “Bora” Nikolic of UC Berkeley is an expert in body-biasing for digital logic. He and his team have designed ten chips in ST’s 28nm FD-SOI, and they’re now working on their 8th generation of energy-efficient SOCs. During his 90-slide (!) tutorial, Energy-Efficient Processors in 28nm FDSOI, he covered: digital logic (including implementation and adaptive tuning of cores for optimal energy efficiency); SRAM and caches (design scenarios and results compared to bulk); supply (generating, switching and analog assists); back bias (how it’s generated and how to use it). He finished with (60 slides of!) design examples and the results they got for power (including adaptive voltage scaling) and performance. He said to be on the lookout for upcoming publications on (even more!) chips, as well as new work on 22nm designs.

A page from Professor Nikolic’s tutorial on FD-SOI design for digital logic. (Courtesy: UC Berkeley, SOI Consortium)

Pushing the Mixed-signal Envelope

Even if you don’t know anything about mixed-signal design, you can walk away from an hour-long lecture by Professor Boris Murmann of Stanford with a good understanding of what it’s all about. In his talk, Pushing the Envelope in Mixed-Signal Design Using FD-SOI, he explained how a mixed-signal person thinks about FD-SOI, and how the different metrics and sweetspots vary depending on what you’re working on.  From there it was the deep dive, as he got into the heart of his talk: simulated transition frequency vs. gm/lD. He explained that while some things might seem counter intuitive (like long channels are more efficient for very low Ft requirements), it’s all related to electrostatics. It’s not yet well explained in the literature, he said, but it should be a big deal.  And he explained why with FD-SOI, you don’t have to design for the worst case. He then talked about where he sees things going – he sees a very bright future indeed for FD-SOI and analog as computing moves into very low-power neural networks. In the end, he said, it all boils down to the FD-SOI performance benefits with respect to better gate control. This translates into “significant improvements” for many mixed-signal/RF building blocks.

Professor Boris Murmann talks about FD-SOI for mixed-signal. (Courtesy: Stanford, SOI Consortium)

All in all, it was a really terrific day. BTW, this tutorial day followed a full-day FD-SOI Symposium in Silicon Valley. Click here to read about that.

Samsung Announces Next FD-SOI Node: 18nm

Big News: Samsung has officially revealed that their next FD-SOI node is 18nm.  The announcement was made at the recent Samsung Foundry Forum, which showcased a number of new technologies that the company says will help enable the development of new devices connecting consumers in entirely new ways. (You can read the full press release here.)

Samsung also announced new features for its 28nm FD-SOI offering, which is called 28FDS. Noting that it is well suited for IoT applications, Samsung said it will gradually expand its 28FDS technology into a broader platform offering by incorporating RF and eMRAM(embedded Magnetic RAM) options.

18FDS is the next generation node on Samsung’s FD-SOI roadmap with enhanced PPA (Power/Performance/Area).

Kinam Kim, President of Samsung Electronics’ Semiconductor Business, introduces the company’s newest foundry process technologies and solutions. (Courtesy: Samsung)

The FD-SOI news was part of an announcement covering Samsung’s newest process technology roadmap.

“The ubiquitous nature of smart, connected machines and everyday consumer devices signals the beginning of the next industrial revolution,” said Jong Shik Yoon, Executive Vice President of the Foundry Business at Samsung Electronics. “To successfully compete in today’s fast-paced business environment, our customers need a foundry partner with a comprehensive roadmap at the advanced process nodes to achieve their business goals and objectives.”

ARM Steps Up! And More Good News From Consortium’s FD-SOI Symposium in Silicon Valley

ARM is stepping up its effort to support the FD-SOI ecosystem. “Yes, we’re back,” confirmed Ron Moore, VP of ARM’s physical design group. This and much more good news came out of the recent FD-SOI Symposium organized in Silicon Valley by the SOI Consortium.

The full-day Symposium played to a packed room, and was followed the next day by a full-day design tutorial. Though it was a Silicon Valley event, people flew in from all over the world to be there. (BTW, these symposia and tutorials will also be offered in Japan in June, and Shanghai in the fall). I’ll cover the Silicon Valley FD-SOI design tutorial (which was excellent, btw) in a separate post.

Most of the presentations are now posted on the SOI Consortium website. Here in this ASN post, I’ll touch on some of the highlights of the day. Then in upcoming posts I’ll cover the presentations from Samsung and GlobalFoundries.

ARM Pitches In

If you’re designing in FD-SOI, we’ll help: that was the key message from ARM’s Ron Moore during the panel discussion at the end of the day. Earlier that morning, he’d given an excellent presentation entitled Low-Power IP: Essential Ingredients for IoT Opportunities.

CAGR for most IoT units is roughly 50%, he said, counting home (1.6B units by 2020), city (1.8B), industrial (0.6B) and automotive (1.1B). Compare that to the 2.8B smart phones – which he sees as a remote control and display device. The key differentiator for IoT is that 90% of the time the chip is idle, so you really don’t want leakage.

FD-SOI, he said, gives you a silicon platform that’s highly controllable, enables ultra-low power devices, and is really good with RF.  ARM’s worked with Samsung’s 28FDS FD-SOI offering comparing libraries on bulk and FDSOI, for example, and came up with some impressive figures (see the picture below).

ARM worked with Samsung to compare libraries on 28nm bulk vs 28nm FD-SOI, and came back with these very impressive results. (Courtesy: ARM, SOI Consortium)

The foundry partners and wafer providers are in place. So now ARM is asking about which subsystems are needed to fuel FD-SOI adoption.  Ron recognizes that the ARM IP portal doesn’t yet have anything posted for FD-SOI, but they know they need to do it. He called on the SOI Consortium to help with IoT reference designs and silicon proof points.

In the Q&A, audience member John Chen (VP of Technology and Foundry Management at NVIDIA) asked about FD-SOI and low-cost manufacturing of IoT chips. Moore replied that we should be integrating functionality and charging a premium for IoT chips – this is not about your 25-cent chip, he quipped.

NXP – New Levels in ULP

Geoff Lees, SVP & GM of NXP’s Microcontroller business gave a terrific talk on their new i.MX 7 and 8 chips on 28nm FD-SOI. (And Rick Merritt gave it great coverage in EETimes – see NXP Shows First FD-SOI Chips.)

NXP’s been sampling the i.MX 7 ULP to customers over the last six months, the i.MX 8QM is ramping, and the i.MX 8QXP, 8Q and 8DX are enroute. Each of these chips is optimized for specific applications using biasing.  A majority of the design of each chip is hard re-use, and the subsystems can be lifted and dropped right into the next chip in the series. Power consumption and leakage are a tiny fraction of what they’d had been in previous generations. Ultra low power (aka ULP)  is heading to new levels, he says.

With FD-SOI, it’s easy to optimize at multiple points: in the chip design phase, in the production phase and in the use phase. They can meet a wide range of use cases, precisely targeting for power usage. FD-SOI makes it a win-win: it’s a very cost effective way to work for NXP, plus their customers today need that broader range of functionality from each chip.

Geoff tipped his hat to contributions made here by Professor Boris Murmann of Stanford, who’s driving mixed signal and RF into new areas, enabling high-performance analog and RF integration. (Folks attending the FD-SOI tutorial the next day had the good fortune to learn directly from Professor Murmann.)

Finally, he cited something recently pointed out by Soitec (they’re the SOI wafer folks) Chief Scientist Bich-Yen Nguyen: if half your chip is analog and/or RF, she’s observed, the future is very bright indeed for FD-SOI.

And Much More

Briefly, here are some more highlights.

Synopsys: John Koeter, VP of the Marketing Solutions group showed slides of what they’ve done in terms of IP for Samsung and GlobalFoundries’ FD-SOI offerings.  But there’s a lot they’ve done with partners he couldn’t show because it’s not public. In terms of tools and flows, it’s all straightforward.

Dreamchip:  Designing their new chip in 22nm FD-SOI was 2.5x less expensive than designing it in FinFET would have been, said COO Jens Benndoorf in his presentation, New Computer Vision Processor Chip Design for Automotive ADAS CNN Applications in 22nm FDSOI.  One application for these chips (which taped out in January) will be “digital mirroring”: replacing sideview mirrors with screens. Why hasn’t this been done before? Because LED flickering really messes with sensor readings – but they’ve mastered that with algorithms. The chip will also be used for 360o top view cameras and pedestrian detection.  They’re using Arteris IP for the onchip networking, and implemented forward body bias (FBB).  The reference platform they created for licensing has generated lots of interest in the automotive supply chain, he said.

Dreamchip is using Arteris IP for their ADAS chip in GF’s 22nm FD-SOI (Courtesy: Dreamchip, SOI Consortium)

Greenwaves:  CEO Loic Lietar talked about the high performance, ultra-low power IoT applications processor they’re porting from bulk to FDSOI with a budget of just three million euros.   The RISC-V chip leverages an open source architecture (which he says customers love) and targets smart city, smart factory, security and safety applications. As such, it needs to wake up very fast using just microwatts of power – a perfect match for body biasing in FD-SOI.

 

Greenwaves expects big power savings in their move to FD-SOI. (Courtesy: Greenwaves, SOI Consortium)

Leti: In her talk about roadmaps, CEO Marie-Noelle Semeria said the main two drivers they’re seeing in the move to FD-SOI are #1: low power (a customer making chips for hearing aids can cut power by 8x using body biasing, for example) and #2: RF (with Ft and Fmax performance that “…will be hard for FinFET to achieve”). Leti knows how to pull in all kinds of boosters, and is finding that RF performance is still excellent at the 10/7nm node. They’ve developed a low-power IoT platform with IP available for licensing. Other recent FD-SOI breakthroughs by Leti include: demonstration of a 5G mmW 60GHz transceiver developed with ST; the first 300mm Qbit, opening the door to quantum computing; a photodiode opening the door to a light-controlled SRAM; and a new 3D memory architecture leveraging their CoolCubeTM that they’re working on with Stanford.

IBS: CEO Handel Jones predicts that there “will be war in the year to come” at the 22nm node, as all the big foundries take aim.  FD-SOI is the best technology for RF, ULP and AMS, and there’s a huge market for it. He also said China made the right decision to support FD-SOI, and will come out ahead in 5G.

The day ended with a lively panel discussion (moderated by yours truly) featuring experts from ARM, GF, Invecas, Soitec, Synopsys, Verisilicon and Sankalp.  IP availability was a big theme, but generally there was agreement that while some gaps still exist, they’re being filled:  lack of IP is no longer an issue. Soitec VP Christophe Maleville confirmed that the wafers for FD-SOI are readily available and that they’re seeing excellent yields.

All in all, it was another really good day for FD-SOI in Silicon Valley.

Quick Preview of (Great!) FD-SOI Design Tutorial Day (14 April ’17, Silicon Valley)

Would you like to better understand FDSOI-based chip design? If you’re in Silicon Valley, you’re in luck. On April 14th, the SOI Consortium is organizing a full day of FDSOI tutorials for chip designers. This is not a sales day. This is a learning day.

On the agenda are FD-SOI specific design techniques for: analog and RF integration (millimeter wave to high-speed wireline), ultra-low-power memories and microprocessor architecture, and finally energy-efficient digital and analog-mixed signal processing designs.

The courses will be given by top professors at top universities (including UC Berkeley, Stanford, U. Toronto and Lund). These folks not only know FDSOI inside and out, they’ve all spent many years working closely with industry, so they truly understand the challenges designers face. They’ve helped design real (and impressive) chips, and have stories to tell. (In fact, all of the chips they’ll be presenting were included in CMP’s multiproject wafer runs – click here if you want to see and read about some of them on CMP website.)

The FD-SOI Tutorial Day, which will be held in San Jose, will begin at 8am and run until 3pm. Each professor’s course will last one hour. Click here for registration information.  

(The Tutorial Day follows the day after the annual SOI Silicon Valley Symposium in Santa Clara, which will be held on April 13th.)

Here’s a sneak peak at what the professors will be addressing during the FDSOI Tutorial Day.

FDSOI Short Overview and Advantages for Analog, RF and mmW Design – Andreia Cathelin, Fellow, STMicroelectronics, France

If you know anything about FDSOI, you know ST’s been doing it longer than pretty much than anyone. Professor Cathelin will share her deep experience in designing ground-breaking chips.

Summary slide from Professor Andreia Cathelin’s course at the upcoming FDSOI Tutorial (Courtesy: SOI Consortium and ST)

She’ll start with a short overview of basic FDSOI design techniques and models, as well as the major analog and RF technology features of 28nm FDSOI technology.  Then the focus  shifts to the benefits of FD-SOI technology for analog/RF and millimeter-wave circuits, considering the full advantages of wide-voltage range tuning through body biasing.  For each category of circuits  (analog/RF and mmW), she’ll show concrete design examples such as an analog low-pass  filter and a 60GHz Power Amplifier (an FDSOI-aware evolution of the one featured on the cover of Sedra/Smith’s Microelectronics Circuits 7th edition, which is probably on your bookshelf.) These will highlight the main design features specific to FD-SOI and offer silicon-proof of the resulting performance.

Unique Circuit Topologies and Back-gate Biasing Scheme for RF, Millimeter Wave and Broadband Circuit Design in FDSOI Technologies – Sorin Voinigescu, Professor, University of Toronto, Canada.

Particularly well-known for his work in millimeter wave and high-speed wireline design and modeling (which are central to IoT and 5G), Professor Voinigescu has worked with SOI-based technologies for over a decade. His course will cover how to efficiently use key features of FD-SOI CMOS technology in RF, mmW and broadband fiber-optic SoCs. He’ll first give an overview at the transistor level, presenting the impact of the back-gate bias on the measured I-V, transconductance, fT and fMAX characteristics.  The maximum available power gain (MAG) of FDSOI MOSFETs will be compared with planar bulk CMOS and SiGe BiCMOS transistors through measurements up to 325 GHz.

Summary slide from Professor Sorin Voinigescu’s course at the upcoming FDSOI Tutorial (Courtesy: SOI Consortium and U. Toronto)

Next, he’ll provide design examples including LNA, mixer, switches, CML logic and PA circuit topologies and layouts that make efficient use of the back-gate bias to overcome the limitations associated with the low breakdown voltage of sub-28nm CMOS technologies. Finally, he’ll look at a 60Gb/s large swing driver in 28nm FDSOI CMOS for a large extinction-ratio 44Gb/s SiPh MZM 3D-integrated module, as a practical demonstration of the unique capabilities of FDSOI technologies that cannot be realized in FinFET or planar bulk CMOS.

Design Strategies for ULV memories in 28nm FDS-SOI – Joachim Rodrigues, Professor, Lund University, Sweden

Having started his career as a digital ASIC process lead in the mobile group at Ericsson, Professor Rodrigues has a deep understanding of ultra-low power requirements. His tutorial will examine two different design strategies for ultra-low voltage (ULV) memories in 28nm FD-SOI.

For small storage capacities (below 4kb), he’ll cover the design of standard-cell based memories (SCM), which is based on a custom latch. Trade-offs for area cost, leakage power, access time, and access energy will be examined using different read logic styles. He’ll show how the full custom latch is seamlessly integrated in an RTL-GDSII design flow.

Summary slide from Professor Joachim Rodrigues’ course at the upcoming FDSOI Tutorial (Courtesy: SOI Consortium and Lund U.)

Next, he’ll cover the characteristics of a 28nm FD-SOI 128 kb ULV SRAM, based on a 7T bitcell with a single bitline. He’ll explain how the overall energy efficiency is enhanced by optimizations on all abstraction levels, from bitcell to macro integration. Degraded performance and reliability due to ULV operation is recovered by selectively overdriving the bitline and wordline with a new single-cycle charge-pump. A dedicated sense-amplifierless read architecture with a new address-decoding scheme delivers 90MHz read speed at 300mV, dissipating 8.4 fJ/bit-access. All performance data is silicon-proven.

Energy-Efficient Processors in 28nm FDSOI – Bora Nikolic, Professor, UC Berkeley, USA

Considered by his students at Berkeley as an “awesome” teacher, Professor Nikolic’s research activities include digital, analog and RF integrated circuit design and communications and signal processing systems. An expert in body-biasing, he’s now working on his 8th generation of energy-efficient SOCs. During the FDSOI tutorial, he’ll cover techniques specific to FDSOI design in detail, and present the design of a series of energy-efficient microprocessors. They are based on an open and free Berkeley RISC-V architecture and implement several techniques for operation in a very wide voltage range utilizing 28nm FDSOI. To enable agile dynamic voltage and frequency scaling with high energy efficiency, the designs feature an integrated switched-capacitor DC-DC converter. A custom-designed SRAM-based cache operates in a wide 0.45-1V supply range. Techniques that enable low-voltage SRAM operation include 8T cells, assist techniques and differential read.

Summary slide from Professor Bora Nikolic’s course at the upcoming FDSOI Tutorial (Courtesy: SOI Consortium and UC Berkeley)

Pushing the Envelope in Mixed-Signal Design Using FD-SOI – Boris Murmann, Professor, Stanford University, USA

If you’ve ever attended a talk by Professor Murmann, you know that he’s a really compelling speaker. His research interests are in the area of mixed-signal integrated circuit design, with special emphasis on data converters and sensor interfaces. In this course, he’ll look at how FD-SOI technology blends high integration density with outstanding analog device performance. In same-generation comparisons with bulk, he’ll review the specific advantages that FD-SOI brings to the design of mixed-signal blocks such as data converters and switched-capacitor blocks. Following the review of such general benchmarking data, he’ll show concrete design examples including an ultrasound interface circuit, a mixed-signal compute block, and a mixer-first RF front-end.

Summary slide from Professor Boris Murmann’s course at the upcoming FDSOI Tutorial (Courtesy: SOI Consortium and Stanford U.)

Key Info About the FD-SOI Tutorial Day

  • Event: Designing with FD-SOI Technologies
  • Where: Samsung Semiconductor’s Auditorium “Palace”, San Jose, CA
  • When: April 14th, 2017, 8am to 3pm
  • Cost: $475
  • Organizer: SOI Industry Consortium
  • Pre-registration required – click here to sign up on the SOI Consortium website.

 

NXP’s new i.MX 7ULP On 28nm FD-SOI – Yes! Industry’s Lowest Power General Purpose Applications Processor (part 1)

They’re calling it, “The most advanced, lowest power-consuming GPU-enabled MPU on the market.” It’s NXP’s new i.MX 7ULP general-purpose processor, and it’s on 28nm FD-SOI. They’ve got a nifty video summing it all up – you can watch it here.

NXP is first to market with a general-purpose processor on FD-SOI: the i.MX 7ULP. It’s got both ultra-low power consumption and rich graphics for battery powered applications. (Courtesy: NXP)

With the i.MX 7ULP, NXP is first to market with an FD-SOI applications processor offering the industry’s lowest power consumption. The debut was made at the recent Embedded World Conference in Nuremberg, Germany, and it made a big splash in media across the globe. (Read the full press release here.) In deep sleep mode, it boasts power consumption of just 15 uW or less: 17 times less than previous (and highly successful) low power i.MX 7 devices. Dynamic power efficiency is improved by 50 percent on the real-time domain.

The i.MX 7ULP applications processor family is currently sampling to select customers. Broader availability of pre-production samples is scheduled for Q3 2017.

Hello, IoT!

The high-performance, low-power solution is optimized for customers developing applications that spend a significant amount of time in standby mode with short bursts of performance-intense activity that require exceptional graphics processing. Sounds like IoT – and indeed it is, and more.

With the i.MX 7ULP, NXP’s targeting wearables, portable healthcare, smart home controls, gaming accessories, building automation, general embedded control and IoT edge solutions. Bottom line: it’s designed to enable ultra-low-power and secure, portable applications – especially those demanding long battery life. (Read the current fact sheet here.)

The details

The i.MX 7ULP features an advanced implementation of the ARM® Cortex®-A7 core, the ARM Cortex-M4 core, as well as a 3D and 2D Graphic Processing Units (GPUs). It’s got a 32-bit LPDDR2/LPDDR3 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors.

(Courtesy: NXP)

NXP says this new design, based on FD-SOI’s lower voltage capability, enables rich user experience through extremely power-efficient graphics acceleration, a fundamental requirement in many of today’s consumer and industrial battery-operated devices that incorporate robust graphic interfaces. Further enablement includes rich Linux or Android ecosystem with the real-time capability supported by FreeRTOS.

Leveraging body biasing and more

NXP credits the design’s extreme low leakage and operating voltage (Vdd) scalability to that FD-SOI specialty: reverse and forward body biasing (RBB/FBB) of the transistors, and its smart power system architecture.

In presenting the new i.MX 7ULP to the tech press, the company highlighted the following FD-SOI design advantages:

  • Large dynamic gate and body biasing voltage range

  • Domain and subsystem optimization with custom standard cell library with mixed voltages

  • Low quiescent current (Iq) bias generators

  • Enhanced ADC performance with unique FD-SOI attributes

  • Fail Safe I/O for simplified low power system design

To that, add a note about security. As the chip’s fact sheet says, “The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption secure boot, and tamper detection.” Those are just the sort of things that demand the bursts of high performance that dynamic forward body biasing delivers where and when it’s needed.

Samsung fabs, Verisilicon adds IP

Two other SOI Consortium members – Samsung and Verisilicon – are particularly pleased with NXP’s results.

“We are excited that NXP is the first to bring the benefits of FD-SOI (28FDS) technology to the general purpose market,” says Ryan Lee, VP of the Foundry Marketing Team at Samsung Electronics. “28FDS technology will satisfy a growing and critical need for ultra low power designs that require power-performance at very low voltages. We plan to evolve 28FDS technology to a differentiated low-power single platform by implementing RF and embedded Non-Volatile Memory (eNVM) solution for our customers’ success.”

NXP’s processor design enables robust low power graphics for the IoT and wearable markets through two graphic processor units (GPU) from Vivante: the GC7000 NanoUltra 3D GPU with a low power single shader, and the GC320 Composition Processing Core (CPC) for 2D graphics. The 3D GPU plays a critical role in enabling rich 3D based user interfaces, while the CPC can accelerate both rich 3D and simpler 2D user interfaces. Processors based on the combination of the two GPUs enable efficient display systems which offload and significantly reduce system resources, in turn providing rich user interfaces at low power levels to extend the battery life of devices.

“Our 3D GPU is a result of a joint collaboration between Vivante and NXP to deliver industry-leading 3D capabilities with the lowest power consumption,” said Wei-Jin Dai CEO at Vivante Corporation and Chief Strategy Officer and GM of the IP Division at Verisilicon. “The power savings from using the right GPU in an ultra low power processor is one of the major attributes and advantages of the architecture.”

So, now shall we dig in a little deeper into the “why FD-SOI” question? Read on in Part 2 of this article.

— By Adele Hars, ASN Editor-in-Chief

Part 2: NXP’s new i.MX 7ULP – More on Why It’s On 28nm FD-SOI

i.MX 7ULP (Courtesy: NXP)

As you learned in Part 1 of this article, NXP is calling its new i.MX 7ULP general-purpose processor, “The most advanced, lowest power-consuming GPU-enabled MPU on the market.” Now let’s get into a little more detail about why it’s on 28nm FD-SOI.

If you read NXP VP Ron Martino’s terrific, two-part ASN piece last year on designing the i.MX 7 and 8, you knew this was coming – and you know why they chose to put it on 28nm FD-SOI. (If you missed it then, be sure to read it here now.)

To recap briefly, Ron cited (then expanded upon – so really: read his piece!) the following points that made 28nm FD-SOI the right choice for NXP’s designers:

  • Cost: a move from 28nm HKMG to 14nm FinFET would have entailed up to a 50% cost increase.

  • Dynamic back-biasing: forward body-bias (FBB) improves performance, while reverse body-bias (RBB) reduces leakage (so effectively contributes to power savings). It’s available with FD-SOI (but not with FinFETs), and gets you a very large dynamic operating range.

  • Performance: because body-biasing can be applied dynamically, designers can use it to meet changing workload requirements on the fly. That gets them performance-on-demand to meet the bursty, high-performance needs of running Linux, graphical user interfaces, high-security technologies, as well as wireless stacks or other high-bandwidth data transfers with one or multiple Cortex-A7 cores.

  • Power savings: FD-SOI lets you dramatically lower the supply voltage (Vdd) (so you’re pulling less power from your energy source) and still get good performance.

  • Analog integration: traditionally designers have used specialized techniques to deal with things like gain, matching, variability, noise, power dissipation, and resistance, but FD-SOI makes their job much easier and results in superior analog performance.

  • RF integration: FD-SOI greatly simplifies the integration of RF blocks for WiFi, Bluetooth or Zigbee, for example.

  • Environmental conditions: FD-SOI delivers good power-performance at very low voltages and in a wide range of temperatures.

  • Security: 28nm FD-SOI provides 10 to 100 times better immunity to soft-errors than its bulk counterpart. And FBB delivers the bursts of high performance many security features require.

  • Overall manufacturing risks: FD-SOI is a lower-risk solution. Foundry partner Samsung provided outstanding support, and very quickly reached excellent yield levels.

But in the end, ultra-low power consumption was biggest driver. Joe Yu, VP of low power MPUs at NXP had the following to say about the new i.MX 7ULP. “Power consumption is at the heart of every decision we made for our new applications processor design, which now makes it possible to achieve stunning visual displays and ultra-low power standby modes in a single processor. From the selection of the FD-SOI process and dual GPU architecture, to the heterogeneous processor architecture with independent power domains, every aspect of our new processor design is aimed at providing the best performance and user experience with unprecedented energy efficiency.”

Next up: i.MX 8 for automotive +

At Embedded World, NXP also presented the new i.MX 8X family – and yes, it’s also on 28nm FD-SOI. It’s the first i.MX offering to feature Error Correcting Code (ECC) on the DDR memory interface, combined with reduced soft-error-rate (SER) and increased latch-up immunity, to support industrial Safety Integrity Level 3 (SIL 3). NXP says that opens new opportunities for innovative industrial and automotive applications.

We’ll cover it in an upcoming ASN blog, so stay tuned!

— By Adele Hars, ASN Editor-in-Chief

12nm FD-SOI on the Roadmap for H1/2019 Customer Tape-out! Says GloFo (While Giving 22FDX Ecosys a Great Boost)

gf_logo12nm FD-SOI has now officially joined the GlobalFoundries’ roadmap, targeting intelligent, connected systems and beating 14/16nm FinFET on performance, power consumption (by 50%!) and cost (see press release here). Customer product tape-outs are expected to begin in the first half of 2019. GloFo also announced FDXcelerator™, an ecosystem designed to give 22FDX™ SoC design a boost and reduce time-to-market for its customers (press release here).

gf_12fdxslide16lowres

(Courtesy: GlobalFoundries and SOI Consortium Shanghai FD-SOI Forum 2016)

The news turned heads worldwide (hundreds of publications immediately picked up the news) – and especially in China. “We are excited about the GlobalFoundries 12FDX offering and the value it can provide to customers in China,” said Dr. Xi Wang, Director General, Academician of Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology.  “Extending the FD-SOI roadmap will enable customers in markets such as mobile, IoT, and automotive to leverage the power efficiency and performance benefits of the FDX technologies to create competitive products.”

Wayne Dai, CEO of VeriSilicon (headquartered in Shanghai but designing for the world’s biggest names in the chip biz), added, “We look forward to extending our collaboration with GlobalFoundries on their 12FDX offering and providing high-quality, low-power and cost-effective solutions to our customers for the China market. The unique benefits of FD-SOI technologies enable us to differentiate in the automotive, IoT, mobility, and consumer market segments.”

The ultra-thin FD-SOI wafers are where it all starts, and they’re ready to go in high volume, says Paul Boudre, CEO of SOI wafer leader Soitec. “We are very pleased to see a strong momentum and a very solid adoption from fabless customers in 22FDX offering,” he adds. “Now this new 12FDX offering will further expand FD-SOI market adoption. This is an amazing opportunity for our industry just in time to support a big wave of new mobile and connected applications.”

All About 12

GloFo’s 12FDXTM platform, which builds on the success of its 22FDXTM offering, is designed to enable the intelligent systems of tomorrow across a range of applications, from mobile computing and 5G connectivity to artificial intelligence and autonomous vehicles. Increased integration of intelligent components including wireless (RF) connectivity, non-volatile memory, and power management—all while driving ultra-low power consumption—are key 12FDX selling points that FinFETs can’t touch.

The technology also provides the industry’s widest range of dynamic voltage scaling and unmatched design flexibility via software-controlled transistors—capable of delivering peak performance when and where it is needed, while balancing static and dynamic power for the ultimate in energy efficiency.

gf_12fdxslide20lowres

(Courtesy: GlobalFoundries and SOI Consortium Shanghai FD-SOI Forum 2016)

“Some applications require the unsurpassed performance of FinFET transistors, but the vast majority of connected devices need high levels of integration and more flexibility for performance and power consumption, at costs FinFET cannot achieve,” said GLOBALFOUNDRIES CEO Sanjay Jha. “Our 22FDX and 12FDX technologies fill a gap in the industry’s roadmap by providing an alternative path for the next generation of connected intelligent systems. And with our FDX platforms, the cost of design is significantly lower, reopening the door for advanced node migration and spurring increased innovation across the ecosystem.”

Kudos came in from G. Dan Hutcheson, CEO of VLSI Research, IBS CEO Handel Jones, Linley Group Founder Linley Gwennap, Dasaradha Gude, CEO of IP/design specialists INVECAS, Leti CEO Marie Semeria and NXP VP Ron Martino (they’ve already started on 28nm FD-SOI for their i.MX line – read his superb explanations in ASN here).

22 Design Plug ‘n Play

Simultaneously to the 12FDX announcement, GloFo announced the FDXcelerator Partner Program. It creates an open framework under which selected Partners can integrate their products or services into a validated, plug and play catalog of design solutions. This level of integration allows customers to create high performance designs while minimizing development costs through access to a broad set of quality offerings, specific to 22FDX technology. The Partner ecosystem positions members and customers to take advantage of the broad adoption and accelerating growth of the FDX market.

Initial partners of the FDXcelerator Partner Program are: Synopsys (EDA), Cadence (EDA), INVECAS (IP and Design Solutions), VeriSilicon (ASIC), CEA Leti (services), Dreamchip (reference solutions) and Encore Semi (services). These companies have already initiated work to deliver advanced 22FDX SoC solutions and services.

Initial FDXcelerator Partners have committed a set of key offerings to the program, including:

  • tools (EDA) that complement industry leading design flows by adding specific modules to easily leverage FDSOI body-bias differentiated features,
  • a comprehensive library of design elements (IP), including foundation IP, interfaces and complex IP to enable foundry customers to start their designs from validated IP elements,
  • platforms (ASIC), which allow a customer to build a complete ASIC offering on 22FDX,
  • reference solutions (reference designs, system IP), whereby the Partner brings system level expertise in Emerging application areas, enabling customers to speed-up time to market,
  • resources (design consultation, services), whereby Partners have trained dedicated resources to support 22FDX technology; and
  • product packaging and test (OSAT) solutions.

Additional FDXcelerator members will be announced in the following months.

Why Dan Hutcheson/VLSIresearch, Inc. (finally!) Likes FD-SOI

Dan Hutcheson, CEO of VLSIresearch, Inc. finally likes FD-SOI. That’s important, because he’s a really influential person in the chip world. Everybody who’s anybody in the chip biz pays attention to what VLSIresearch, Inc. has to say.

Dan recently gave a talk entitled “FD-SOI: Disruptive or Just Another Process?” to a packed-to-the-brim room during the FD-SOI Symposium in San Jose. (The ppt he used there is available on the SOI Consortium website – download it for free here).

DanHutchesonVideopicHappily for those who didn’t make it to San Jose, Dan then went into the studio and made a video encore of his presentation for all to see – and it’s now posted on his weSRCH site. So you get not just his slides, but also his explanations and comments.

It’s about 20 minutes long – and worth every second. (Recommendation: open the ppt presentation (link here) and the video (link here) in separate windows so you can follow his slides as he talks.)

But for those of you who just want a quick recap, here are some of his key points.

He Did A Survey

Dan, as he’s always quick to point out, is an economist, albeit one extremely well-versed in chip technology. He always thought SOI was an elegant solution, but didn’t see cost savings in the fab as a driver. When asked to give a talk in San Jose, he decided to brush up a bit on what people were saying about FD-SOI. So he did an informal survey – and of course, being Dan, he can talk to just about anyone he wants.

In this case, he talked to decision makers from about a dozen top companies in the chip biz – enough to give him a 95% confidence level in his results. And the results are impressive: almost ¾ said they had FD-SOI designs underway or had already used it, while only about a third said they’ll stick firmly to bulk.

And Found That It’s About Time-to-Money

It turns out that there are companies out there doing both FinFETs and FD-SOI. Why? They’ve figured out the differentiable features, they told him. And some designers are now saying that FD-SOI is actually easier to design in than FinFETs, with one company reporting that design time in FD-SOI was half that of FinFETs.

Dan learned that the two biggest drivers of FD-SOI are IoT and automotive – IoT because those super power-stingy chips get enormous leverage out of back biasing, and automotive for reliability (and for both they get ease of analog integration).

VLSIResearch_FDSOI_markets_SJslide16

(Courtesy: VLSIresearch, Inc. and SOI Consortium)

But at the heart of it, it’s a business case: “It’s not about cost,” he says. “It’s about time-to-money.” With FD-SOI, TTM is significantly faster.

VLSIresearch_FDSOI_bizcase_SJ2016

(Courtesy: VLSIresearch, Inc. and SOI Consortium)

Those that go with FinFET are more often a big company (so they can afford the high NRE* costs) with a huge market, big die and a lot of digital. But if the market’s smaller, faster-moving and needs scaled-down NRE costs, then the people Dan talked to said they are turning to FD-SOI. They see it getting them to market faster, gives them lots of “knobs” and advantages in terms of power, reliability and analog integration, it’s easier to design in, and really enables product differentiation. In fact Dan had analog folks telling him that FD-SOI gave them back some of their favorite tricks and tools that they’d lost after the 130nm node.

(Courtesy: VLSIresearch and SOI Consortium)

(Courtesy: VLSIresearch, Inc. and SOI Consortium)

Finally, Dan sees FD-SOI as a technology with both a long history and a long lifetime ahead. FD-SOI is not in itself disruptive, but is rather an enabler of disruption. The disruption, he says, is IoT. By all means check out his video if you want more detail on his perspective on IoT, automotive and the foundry offerings.

 In conclusion, he urges users to strengthen the ecosystem’s momentum by disclosing their success stories – though he also sees how they might be reluctant to, as FD-SOI is the secret sauce that gives them a huge competitive advantage. But in the end rewards will be reaped, as driving volume up will drive costs down.

If you have a good FD-SOI design story you’d like to share, let us know here at ASN – we’ll be happy to consider it for publication, to help get the word around.

~ ~ ~

*NRE = non-recurring engineering. In a fabless scenario, there are NRE for IP and design (engineering costs, up-front and royalty-based IP costs), NRE for masks and fabrication (mask costs, wafer prototype lots, tools costs, probe cards, load-boards and other one-time capital expenditures), and NRE for qualifications (ESD, latch-up and other industry-specific qualifications, as in automotives).

 

 

 

 

RF-SOI – Foundries Weigh In On New 300mm Wafers for 4G/LTE-A, 5G and IoT. Plus a Look at the Innovation Pipeline – Part 2 of 2

As you may have read in the first part of this series, Soitec (the industry’s leading supplier of SOI wafers) says its 200mm RF-SOI wafers have been used to produce over 20 billion chips, and the company is now in high-volume manufacturing of a 300mm version of its wildly successful RFeSI line (see press release here).

So far it’s been all about RF front-end module – aka FEM – chips that handle the back-and-forth of signals between the transceiver and the antenna, originally in 2G and 3G phones. For 4G/LTE-A (and 5G when that hits), there were new wafer innovations – and now 300mm wafers.

The newest RF-SOI wafers, Soitec’s RFeSI90 series (available in both 200mm and 300mm diameters), offer higher levels of performance such as better uniformity, which chip designers need to achieve greater control of transistor matching in analog designs. Plus with the new wafers designers can use thinner transistors and additional process options to improve RonCoff performance, the figure of merit that’s used to rate the performance of an RF switch. For Soitec customers (and really, anyone doing FEMs these days is a customer), all these advances plus the large supply of 200mm and 300mm wafers means that they can expand their production capacities for RF-SOI devices and produce more highly integrated ICs.

GlobalFoundries, for example, sang the praises of 300mm wafers for RF-SOI at a recent SOI Consortium forum in Tokyo. Here’s a slide from Peter Rabbeni’s talk, (he’s GloFo’s Sr. Director RF Product Marketing and Biz Dev), RFSOI: Defining the RF-Digital Boundary for 5G (you can get the full presentation here):

GloFo_RFSOI_300mm_Tokyo2016_slide24

Courtesy: SOI Consortium and GlobalFoundries

As you see in the slide above, RF-SOI champion Peregrine Semiconductor introduced the industry’s first 300mm RF-SOI technology – that was back in July 2015. Dubbed UltraCMOS® 11, it’s built on GlobalFoundries’ 130 nm 300mm RF technology platform (read about it here).

Looking forward, GF’s Rabbeni noted, “Significant R&D has been done in evaluating the application of SOI to 5G architectures, with very positive results. SOI holds great promise in delivering on the key requirements of 5G systems.”

TowerJazzPanasonic_RFSOI_300mm14

Courtesy: SOI Consortium and TPSCo

Also at the Tokyo event, Kenji Tateiwa, General Manager of R&D Strategic Planning for TPSCo (that’s TowerJazz/Panasonic), gave a great presentation on 300mm RFSOI Development toward IoT Era. 300mm RF-SOI, he noted, “has room to run.”

European Program Pushes Innovation Pipeline

For Soitec, of course, work on future generations of RF-SOI substrates continues unabated. You can be sure they’ve got a product roadmap focused on continued innovation and cost effectiveness for future mobile communication markets.

But in addition to working on its RF-SOI roadmap internally, Soitec is leading an international program to further develop the technology in collaboration with 16 partners from five European countries, representing the entire electronics value chain from raw materials to finished communication products. The REFERENCE Project, awarded in a call for projects by the Electronic Components and Systems for European Leadership (ECSEL) group ─ aims to create a European competitive industrial ecosystem based on RF-SOI.

Over the next three years, the REFERENCE Project expects to innovate new materials, engineered substrates, processes, design, metrology and system integration that pave the way for 5G wireless communications. The R&D and demonstration objectives for 4G+/5G technologies include Soitec’s development of RF-SOI substrates, and the production of RF-SOI devices at two major European semiconductor foundries. These advances will contribute to RF-SOI’s growing use in three targeted applications: cellular communications/the Internet of Things (IoT), automotive and aeronautics , including pioneering new frequency bands.

Soitec is at the forefront of European innovation and we are very happy to be part of this very important European research project involving key partners beyond our direct customers,” said Nelly Kernevez, partnership director at Soitec. “This initiative allows us to build the European Union’s RF community, consolidate our vision of what the future can be, and leverage proven material technology to create RF communication solutions for tomorrow.”

The wireless world will keep progressing by leaps and bounds over the next few years. And it’s looking like ever-advancing RF-SOI substrates will be the springboard. Stay tuned!