22FDX™ - Enabling the Next Wave of Innovative Ultra Low Power Products

Subi Kengeri
Vice President, General Management, CMOS Platforms Business Unit
Outline

1. Design Innovations on the Horizon
2. 22FDX™ – The Differentiating Solution
3. Target Application Examples
4. 22FDX™ Eco-system on an accelerated pace
5. Schedule/Roadmap
Growth in Mobile Computing

Drivers of growth
- Emerging markets
- Social
- eCommerce
- Machine-to-machine interaction
- 5G
- Content consumption

Requirements of semiconductors
- Cost
- Performance equivalent to today’s high-end smartphones
- Power consumption

Cost and Energy Efficiency will be Key Drivers of Innovation
Development of Pervasive Computing

All devices are connected and share their sensor state with the Internet to optimize computing.

Drivers of growth
- Increased network bandwidth
- Big data/analytics services
- Simple user interface
- Security and privacy

Requirements of semiconductors
- Ultra-low power consumption: order of magnitude lower
- Cost: ASP equivalent to $1

Cost and Energy Efficiency will be Key Drivers of Innovation
Emergence of Intelligent Computing

Elements
- Natural interface
- Real-time decision-making
- Ambient
- Sensory
- Aware
- Always on

Drivers of growth
- Drones
- Automotive
- Robotics

Requirements of semiconductors
- Ultra-high performance: e.g., 60 fps image processing
- Very low power
- Cost

Connecting Everything Everywhere
- Ambient Sensors
- IoT
- Autonomous Cars
- Drones / Robots
- Smartphones
- Wearables

Cost and Energy Efficiency will be Key Drivers of Innovation
COST: The economic foundation on which the semiconductor industry has functioned for 4 decades – is at risk…

Wafer cost increase driven by scaling and compounded by - FINFET and double patterning requirements

The era in which shrinking features automatically ensured cheaper transistors is over!

Historical First: Cost per Transistor is Rising
Energy Efficiency: 0.4V is the Minimum Energy Point for almost any Technology – 22FDX™ gets you there..

Most optimum energy operating point is around 0.4V

- As Vdd decreases dynamic power goes down drastically while frequency also goes down
- Leakage power also goes down as Vdd drops
- Energy goes up below ~0.4V Vdd since delay increases result in crow-bar current increase, overshadowing dynamic dynamic power reduction
Introducing 22FDX™ Platform

- Industry’s first 22nm fully-depleted silicon-on-insulator (FD-SOI) technology
- Delivers FinFET-like performance and energy-efficiency at 28nm cost
- Ultra-lower power consumption with 0.4 volt operation
- Software-controlled transistor body-biasing for flexible trade-off between performance and power
- Integrated RF for reduced system cost and back-gate feature to reduce RF power up to ~50%
- Post-Silicon Tuning/Trimming
- Enables applications across mobile, IoT and RF markets

- 70% lower power than 28HKMG
- 20% smaller die than 28nm bulk planar
- Lower die cost than FinFETs
22FDX™ enables improved electrostatics

Bulk CMOS

$DIBL = 0.8 \, \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \left[1 + \frac{X_j^2}{L_{el}^2} \right] \frac{T_{ox} \, T_{depl}}{L_{el} \, L_{el}} \, V_{ds}$

$X_j \rightarrow T_{depl} \rightarrow T_{si}$

FD-SOI

$DIBL = 0.8 \, \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \left[1 + \frac{T_{Si}^2}{L_{el}^2} \right] \frac{T_{ox} \, T_{Si}}{L_{el} \, L_{el}} \, V_{ds}$

Fully Depleted Channel for Low Leakage

Ultra-thin Buried Oxide Insulator

Improved electrostatics:

- Short channel effect
- Higher gm
- Lower gds

Achieved by truncation of both junction depth (X_j) and depletion zone width under gate (T_{depl}).
22FDX™: Forward Body-Bias Extends FD-SOI Value

- 50% lower power at same frequency
- 40% faster performance at same power
- Low Vdd operation (down to 0.4 volts)
- FBB Advantage: Software-controlled body-bias enables dynamic tradeoffs between power, performance and leakage
22FDX™ Offers Multiple Performance/Leakage Optimization points

Optimize for Leakage and Performance

ULL
- Optimized for leakage
- Coupled with RBB achieves \(\approx 1 \text{pA/um leakage} \)

SLVT/LVT
- Lowest \(V_T \)
- Optimized for FBB
- Highest performance

RVT/HVT
- Mid-range \(V_T \)
- Optimized for RBB
- Balance of low leakage and high performance
22FDX™: Multiple Body-Bias and Vt Points on Same Die

Optimize Standby and Dynamic Power

Integrated RF

Wakes up comm block to transmit message

Wakes up Image Processor to zoom in and analyze

RBB for lowest leakage

Detects motion

FBB for lowest dynamic power

FD-SOI Delivers:

- Low static and dynamic power
- RF integration for reduced BOM cost
- RBB and FBB for power/perf tradeoffs
Cost Per Function and Energy Efficiency are the two most important metrics for next wave of Innovations.

22FDX™: Multiple Functions Integrated

22FDX™: Best Power, Performance

22FDX™ enables System level Integration without the need for multiple heterogeneous technologies
22FDX™ improved electrostatics enable higher operating f_T, higher self-gain at high gain efficiency bias

Each curve is constructed by simulating multiple L_g for that technology. V_g is swept and F_T and self gain found for the V_g where $g_m/I = 15\ V^{-1}$. The right most point on each curve is the minimum allowed L_g. Longer FETs have higher self gain and lower F_T.
Design Migration to 22FDX™ from Bulk node

Migration to 22FDX™ (Design Flow):

1. Digital Design Flow is similar to bulk digital design flow
2. Some of the features are for advanced nodes (both bulk and SOI)
 - AOCV/POCV/LVF – Double Patterning Extraction – In-design modules
3. The differences are taken care of in our StarterKit releases
4. Can either use our StarterKit or use it as blueprint

Legend
- Same Step as Bulk
- New Step for 22FDX

- Working with Major EDA partners to qualify Tools and Design flow
22FDX is the First Technology to demonstrate 0.4V operation capability at >500Mhz on an ARM A7 Processor

- FinFet like Performance (1.2Ghz)
- 50% faster performance and 18% lower power than 28HKMG
- 47% lower power than 28HKMG at Iso-Frequency
- 92% Less Power at 520MHz (wrt 28HKMG at 800MHz)

Source: Verisilicon
22FDX™ Platform Extensions

- **22FDX Base Platform**
 - 4 Core Vts
 - 2 IO Vts @ 1.2/1.5/1.8v
 - Passives
 - SRAMs (HD, HC, LV, ULV, TP)
 - 8T/12T libraries
 - Software controlled Forward/Reverse body-bias

Base platform PDK & IP

Application-optimized extensions

- **ulp adds** logic libraries and memory compiler optimized for 0.4v logic operation

- **ull adds** devices, libraries, and memory compilers to achieve 1pA/um leakage

- **uhp adds** optimized BEOL stacks, 12T libraries optimized at OD, high-speed SERDES (16/28GHz), and MIM capacitor

- **rfa adds** RF enablement, BEOL passives, and IP for BTLE, WiFi
22FDX™ Foundation IP – Under Development

<table>
<thead>
<tr>
<th>IP Type</th>
<th>IP Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation IP</td>
<td></td>
</tr>
<tr>
<td>Standard Cells</td>
<td>High Density, High Performance</td>
</tr>
<tr>
<td>Memory Compilers</td>
<td>(a) High Density Single-Port SRAM</td>
</tr>
<tr>
<td></td>
<td>(b) High Speed Single-Port SRAM</td>
</tr>
<tr>
<td></td>
<td>(c) High Density Single-Port Register File</td>
</tr>
<tr>
<td></td>
<td>(d) High Speed Single-Port Register File</td>
</tr>
<tr>
<td></td>
<td>(e) High Speed Two-Port Register File</td>
</tr>
<tr>
<td></td>
<td>(f) High Density Via ROM</td>
</tr>
<tr>
<td>GPIO</td>
<td>Voltages TBD and interfaces (SPI, I2C, MMC)</td>
</tr>
<tr>
<td>eFuse</td>
<td>4K macro</td>
</tr>
<tr>
<td>PLL</td>
<td>2-3 PLLs; Frequency, Jitter, Area, Power TBD</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>Support for multiple remote monitors</td>
</tr>
<tr>
<td>OTP</td>
<td>One-Time Programmable</td>
</tr>
</tbody>
</table>
22FDX™ Complex IP – Under Development

<table>
<thead>
<tr>
<th>IP Type</th>
<th>IP Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex IP</td>
<td>**</td>
</tr>
<tr>
<td>1-12.5G Multi-protocol SERDES</td>
<td>PCIe 1.1 (x1); XAUI 3.125</td>
</tr>
<tr>
<td></td>
<td>PCI2 2.0 (x1, x4); XAUI 6.125</td>
</tr>
<tr>
<td></td>
<td>PCIe3 (Root and endpoint 2.5/5.0/8.0Gb/s)</td>
</tr>
<tr>
<td></td>
<td>USB3.1 (5/10Gb/s)</td>
</tr>
<tr>
<td></td>
<td>SATA (Gen 1, 2, and 3)</td>
</tr>
<tr>
<td></td>
<td>Ethernet 1 – 10G BP KR</td>
</tr>
<tr>
<td>USB2 PHY</td>
<td>USB2.0 HOST and OTG</td>
</tr>
<tr>
<td>DDR3/DDR4</td>
<td>DDR3 up to 2400, DDR4 up to 3600</td>
</tr>
<tr>
<td>LPDDR3/LPDDR4</td>
<td>LPDDR3 2133, LPDDR4 4267</td>
</tr>
<tr>
<td>DPHY</td>
<td>MIPI DPHY (CSI2, DSI) [4lanes; 12 Bit]</td>
</tr>
<tr>
<td>MPHY or CPHY</td>
<td>MIPI MPHY (SSIC/UFS2) with Gear3 support</td>
</tr>
<tr>
<td>DP/HDMI/MHL 2.x – TX</td>
<td>Combo, HDMI2.x (6Gb/s), DisplayPort1.3 (8.1Gb/s)</td>
</tr>
<tr>
<td>DP/HDMI/MHL 2.x – RX</td>
<td>DisplayPort (5.4Gb/s), HDMI2.x (6Gb/s)</td>
</tr>
<tr>
<td>Frac PLL</td>
<td>1 GHz, Low Jitter PLL</td>
</tr>
<tr>
<td>Video DAC</td>
<td>2-Channel</td>
</tr>
<tr>
<td>24b Audio DAC</td>
<td>2 Channel</td>
</tr>
<tr>
<td>16b SAR Audio ADC</td>
<td>2 Channel</td>
</tr>
<tr>
<td>Body Bias Generator</td>
<td>Leverage STM IP</td>
</tr>
<tr>
<td>RF IP</td>
<td>WiFi (802.11AC), 802.15.4, Blue Tooth LE</td>
</tr>
</tbody>
</table>
FDSOI Has a Bright Future

22FDX™ Differentiated features will be extended to 10nm Generation

<table>
<thead>
<tr>
<th>FDSOI Scaling</th>
<th>FinFET Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong industry support today – Ecosystem being established on an accelerated pace</td>
<td>Ecosystem established</td>
</tr>
<tr>
<td>Scaling roadmap</td>
<td>Scaling roadmap</td>
</tr>
<tr>
<td>- Power/Perf demonstrated w/ 14FD</td>
<td>- Good electrostatic demonstrated</td>
</tr>
<tr>
<td>- Boosters defined down to 10FD</td>
<td>- Higher effective Device width</td>
</tr>
<tr>
<td>Lower Cost / Die</td>
<td>Higher Cost & Higher complexity</td>
</tr>
<tr>
<td>- Fewer mask layers</td>
<td></td>
</tr>
<tr>
<td>- Faster learning cycles</td>
<td></td>
</tr>
<tr>
<td>Back-Gate bias (Software controlled)</td>
<td>Back Bias is not Effective</td>
</tr>
<tr>
<td>- Process / Variability compensation</td>
<td></td>
</tr>
<tr>
<td>- Flexible Dynamic vs. Static Power</td>
<td></td>
</tr>
<tr>
<td>Low-Leakage Devices & Memory</td>
<td>Higher Leakage in a given foot-print (3D)</td>
</tr>
<tr>
<td>- Reverse body-bias enhances further</td>
<td></td>
</tr>
<tr>
<td>Lowest Vmin Device</td>
<td></td>
</tr>
<tr>
<td>- Lower intrinsic Capacitance</td>
<td>Low Vdd, but inherently higher than FDSOI</td>
</tr>
<tr>
<td>- Lower intrinsic variability</td>
<td>- 3D architecture required for electrostatics</td>
</tr>
<tr>
<td>- Superior Weff tuning for low power</td>
<td></td>
</tr>
<tr>
<td>- Forward body-bias</td>
<td></td>
</tr>
</tbody>
</table>
22FDX™: The Right Technology at the Right Time

22FDX™ Design Kits available NOW
Next node Target: 10nm FinFET Performance at 20-30% lower die-cost
22FDX™: Enables Innovation across a wide range of Applications

Consumer (STB/DTV)
Beats Energy Star goals and enables small form factors

Wearables
Longer battery life and RF integration to reduce system cost

IoT/Industrial (MPU, ISP, MCU)
HD image/video, integrated RF/MRAM, battery operation

Mainstream Mobile
Meets display, video, and wireless needs w/o FinFET cost

Auto/Info-
Lower T_j at 125°C ambient and better Soft Error Rate (SER)

WiFi/RF
Achieves higher data rates at lower power
22FDX™: The Right Technology at the Right Time

- FinFET-like performance at 28nm cost
- 0.4 Volt Operation
- Software-controlled transistor body-biasing
- Integrated eNVM and RF
- Post-Silicon Tuning/Trimming

Early Design Kits available now

Let us Lead the next wave of Innovations together !!
Thank you