ST H9SOI_FEM:
0.13um RF SOI Technology for Front End Module Monolithic Integration

Pietro Maestri, RF Product Line Director
SOI Consortium Forum, Tokyo, January 21st, 2016
Mobile RF Evolution driven by LTE

RF band proliferation
- The exponential growth of mobile data has driven up wireless spectrum need
- 3GPP Release 12 standardized in Q1’15: > 40 RF bands
- 3GPP Release 13: RF spectrums from 600 MHz to ~6 GHz (LTE)

Carrier Aggregation (CA) combinations are proliferating
- Carriers in within the same RF band or across multiple RF bands
- Current LTE CA FEM degrading RF performances Vs classical LTE FEM
- CA band combinations: 28 for 3GPP Release 11
 115 for 3GPP Release 12

Antenna proliferation / challenge
- Primary & secondary antennas to support 3G Rx Diversity & 4G MIMO
- Extended RF bands support forcing to LB / MB / HB / multi-feed antennas
- Transmit antenna swap to optimize uplink performance at cell edges, avoiding dropped calls

January 26, 2016
RF SOI adoption in FEM

- RF SOI market growth (> 25% AGR) still driven by the RF Switch!
 - RF SOI is the most viable technology
 - RF SOI widely used for Antenna Switches, Diversity path, PAD, Antenna tuner

- RF SOI quickly gaining ground against GaAs in PA market

- RF SOI is driving the FEM integration thanks to:
 - Fully Integrated solution
 - Smart and reconfigurable Front End
 - Better Insertion loss and linearity for RF Switch
 - Better matching capability
 - Cheap process using large volume CMOS fabs
RF SOI FEM Integration: The Next Step

Front-End integration is the path for small, high performing and cost effective solutions to address 3G LTE/4G CA and Wi-Fi 802.11ac

Benefits of Monolithic Integration

- Reduced size and cost
- Improved performance
 - Reducing inter-die signal routing and constrains of MCM
 - Taking advantage of shorter and faster on die interconnection
 - Avoiding non predictable behavior in interfacing devices independently designed
- Simplified supply-chain
- Reduced and simplified product development cycle time

January 26, 2016
ST Value Proposition

ST is **fully committed** to RF SOI technology with its **H9SOI_FEM** providing to the market a **long term technology roadmap** and **high capacity** foundry services.

Technology Partner
- Technology Roadmap
 - Substrate, IP, Process
- Design Expertise
- Design Services
 - Modeling, Packaging, Testing

Performance & Integration
- Switch \(R_{on,Coff} \), Linearity
- Power Amplifier Efficiency
- LNA low noise figure
- On-board Filtering

Top Class Manufacturing
- High quality fabs
- Scalable Capacity
- Best in Class TTM & customer service

January 26, 2016
H9SOI_FEM

High performance Technology developed for FEM integration

ST H9SOI_FEM maintains best RF Switches performances when integrating PA and LNA devices

January 26, 2016
H9SOIFEM Roadmap

<table>
<thead>
<tr>
<th>Switch Device</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron*Coff</td>
<td>185fs</td>
<td>170fs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch Perf</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular SP9T</td>
<td>0.4dB @1GHz</td>
<td>0.3dB @1GHz</td>
</tr>
<tr>
<td>Cellular LTE 3G/4G</td>
<td>0.25dB @1GHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellular Power PA</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxPAE Gain 3G PA FoM</td>
<td>73% 14dB</td>
<td>77% 14dB</td>
</tr>
<tr>
<td>Interleaved Cascode Gen 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LNA</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO1 MOS 0.13um/1.2V</td>
<td></td>
</tr>
<tr>
<td>NFmin</td>
<td>2015</td>
</tr>
<tr>
<td>0.4dB @2GHz, fully compatible with all Switch options</td>
<td></td>
</tr>
</tbody>
</table>

(*) Pin: 26dBm

Beyond Device FoM, ST roadmap is driven by standards evolution and performances in application

January 26, 2016
H9SOI_FEM BEOL Stacks

M3ALU

2.5 µm
12 mΩ/☐

54 mΩ/☐
M2

155 mΩ/☐
M1

R☐=9.23 mΩ/☐

M4ALU

2.5 µm
12 mΩ/☐

54 mΩ/☐
M3

54 mΩ/☐
M2

155 mΩ/☐
M1

R☐=7.88 mΩ/☐

M4TC

1.2 µm
25 mΩ/☐

4 µm Cu

5 mΩ/☐

R☐=3.67 mΩ/☐

M3TCTA

4 µm
7.5 mΩ/☐

4 µm Cu

5 mΩ/☐

R☐=2.65 mΩ/☐

Aluminium BEOL

Thick Copper Options

4 different BE stacks → 4 different DK in a single Design Flow

January 26, 2016
H9SOI_FEM RF Switch performances

Available in DK
Qualified for production

Ron Level (Ohm.mm)

Lower Ron = Better Harmonics

Best \(R_{on} \) of the market, H9SOI_FEM RF Switches
Low Ron has strong factor of merit on top of Low Ron*Coff

January 26, 2016
State of the art RF Switch performances for both Cellular and Wi-Fi

January 26, 2016
GO1 0.13 µm MOS optimized for LNA

- 1.2V / GO1 gate oxide
- Very low noise figure measurements:
 - 0.4 dB @ 2 GHz
 - 0.6 dB @ 6 GHz
- >0.4 dB better than 0.18µm lithography

0.13µm 1.2V MOS allows best in class Cellular LNA performances
(Wide band LTE requirements and WiFi high frequencies)
CMOS SOI PA Challenges and Success

A Power Amplifier is a solution based on technologies, transistors, passives, biasing, control circuits, and innovation to provide an amplified signal to an output load.

<table>
<thead>
<tr>
<th>Cellular 3G/4G PA</th>
<th>Meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Gain (28dBm)</td>
<td>27.5 dB</td>
</tr>
<tr>
<td>Pmax</td>
<td>31.2dBm</td>
</tr>
<tr>
<td>P1dB (average)</td>
<td>30.5dBm</td>
</tr>
<tr>
<td>PAE@28dBm 2 stages</td>
<td>39%</td>
</tr>
<tr>
<td>PAE max</td>
<td>50%</td>
</tr>
<tr>
<td>ACLR 5MHz@28dBm</td>
<td>-41dBc</td>
</tr>
<tr>
<td>ACLR 10M@28dBm</td>
<td>-54dBc</td>
</tr>
<tr>
<td>Factor Of Merit (FOM) ACLR + PAE @ 28 dBm</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wi-Fi PA</th>
<th>Meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain at 21dBm @ 5.9 GHz</td>
<td>12.6 dB</td>
</tr>
<tr>
<td>ICC at 21dBm</td>
<td>165 mA</td>
</tr>
<tr>
<td>Pmax @ 5.9 GHz</td>
<td>28 dBm</td>
</tr>
</tbody>
</table>

Best in Class Cellular RF SOI 3G/4G PA performances (FoM=80) Wi-Fi PA key parameters demonstrated @ 5.9 GHz

January 26, 2016
H9SOIFEM Design Ecosystem

- Active devices: MOS transistors Pcells for RF SWITCH, LNA and PA
- High Quality Factor Passive devices Pcells: inductances, capacitances
- 4 metal stacks to address all applications specificities

Close collaboration with major EDA companies to provide state-of-the-art tools

- ESD KIT Library
- Pads Library (WB, FC, WLCSP)
- 2.5V Standard cells and IOs library compatible with MIPI (MIPI IP available)
- Digital Cadence Flow

- Substrate Modeling Task Force to develop CAD tools addressing Hx < -95dBm
- Fully integrated Thermal Simulation CAD Flow under development

NEW January 26, 2016
More than a pure foundry, a long term partner with a global manufacturing structure

Dedicated R&D activity (process, design, tools) to develop specific devices in partnership

RF SOI Power devices

Experienced Supply Chain handling Billion Units/year

Customer-Oriented Service & Support Failure Analysis

Assembly & Packaging Facilities

Industrialization Expertise

January 26, 2016
Summary : ST Added Value

- Excellent RF Switch Linearity
- Outstanding RF SOI PA Factor of Merit : 80
- Complete integration (LNA, Switch, PA, filtering) with no performance compromise
- Very Predictive silicon behavior from accurate modeling
- Reliable process with very short Cycle time (prototyping / production)

January 26, 2016